

# Time

Of

PHENIX Focus
Time Of Flight

Flight

H. Masui For the TOF group





### **Outline**

- Purpose of PHENIX TOF
- Basics
- Hardware Design & Readout
- Timing Measurement
- Calibration
- Physics Results
- Summary





# Purpose of PHENIX TOF

- Hadron measurement / Particle Identification (PID)
  - Charged hadrons (π/K/p/d)
  - From low  $p_T$  to high  $p_T$ .
    - Intrinsic timing resolution  $\Delta t \sim 80 100 \text{ ps}$  (design value).
    - PID capability, assume 4 sigma separation at the flight path of 5m.
      - $-\pi/K$  separation up to  $p_T \sim 2.4$  GeV/c
      - K/p separation up to p<sub>T</sub> ~ 4 GeV/c





### **Basics**





$$t = \frac{L}{c\beta} = \frac{L}{c} \frac{\sqrt{p^2 + m^2}}{p} \longrightarrow m^2 = p^2 \left\{ (\frac{t^2}{L^2}) - 1 \right\}$$





### Where is it?



#### East Arm

- Sector 0 & 1
- 5 meter from vertex.

#### Acceptance

- $-\Delta \phi = \pi/4$
- $|\eta| < 0.35$

#### Segmentation

- Keep the occupancy < 10 %</p>
  - Lose timing information by double hit.
- $dN_{ch}/dy \sim 1500$ 
  - $\rightarrow$  1000 segments.
  - → ~ 100 cm<sup>2</sup>/segment at 5 m from vertex.

# Hardware design (i) Panel





"Panel"

- TOF consists of 10 panels.
- 8 panels are located on sector 1 and 2 panels on sector 0.

South





# Detail view of TOF panel



| Material            | Components (L <sub>RAD</sub> [cm])                                      | L (mm)           | L <sub>RAD</sub> (%) |
|---------------------|-------------------------------------------------------------------------|------------------|----------------------|
| PMT(side,Dy,In su.) | SiO <sub>2</sub> (12.7)+Fe(1.6)+Al <sub>2</sub><br>O <sub>3</sub> (8.9) | 1.6+0.4+0.<br>05 | 3.8                  |
| μ-metal             | Fe(1.76)                                                                | 1.0              | 5.68                 |
| PMT support         | Lucite(34.4)                                                            | 8                | 2.32                 |
| Scintillator        | Plastic(42.4)                                                           | 15.1             | 3.56                 |
| (Light guide)       | Lucite(34.4)                                                            | (23.3)           | (6.77)               |
| Honey Comb          | Carbon(18.8)                                                            | 6.35             | 3.37                 |
| TOTAL               |                                                                         |                  | 18.7                 |

#### TOF Panel

- 15.7 \* 192 \* 49 cm<sup>3</sup>
- Mechanical structure
  - Honeycomb + carbon fiber sheet for supporting structure with "no mass".





### Readout: TOF-FEM



#### Front-End Module





### TVC-AMU chip on the silicon water



- Custom-made chips of TVC+AMU and QVC+AMU.
- From the bench test results of TOF FEE @ Nevis Lab.
  - TVC
    - Overall timing resolution < 25 ps.</li>
    - No dead region in the TVC active range. The dead region < 5 ns.</li>
  - QVC
    - Pedestal width ~ 1.5 ch
- Programmable Analogue Memory Unit
  - Programmable up to 4  $\mu$  sec ~ 40 RHIC bunch crossing time.
- Clock is shared with BBC FEM which is transmitted by differential ECL.





### Principle of Timing measurement



$$TOF = \frac{(T_1 + T_2) - L/v}{2}$$

Y position = 
$$\frac{T_1 - T_2}{2}v$$

T<sub>1</sub>, T<sub>2</sub>: Timing measured by PMT1,2

L: slat length

v: light velocity in scintillator



# Timing (and charge) measurement as an example Clock IDs should be arbitrary 106 ns cycle " $Q_3$ " - " $Q_1$ " gives the integrated charge $V_{Q3}$ T<sub>T3</sub>

 $V_{T3}$ 

Begin reset

 $V_{T4}$ 



Begin charging

Clock

**PMT** 

(threshold)

 $V_{\rm QVC}$ 

DISC

 $V_{TVC}$ 

PHENIX Focus
TOF group

 $V_{T3}$  = constant \*  $T_{T3}^{i}$ 

Hold

 $V_{T2}$ 

dV/dt = constant

End charging

 $V_{T1}$ 

QVC : Charge-to-Voltage Converter TVC : Time-to-Voltage Converter



### Raw Charge/Timing distribution





- QVC/TVC distribution
  - Overlay for all channels





#### Calibration

#### TOF calibration

- 4 steps and 6 parameters.
- 0<sup>th</sup> step (online, "TSCAN")
  - FEM TVC conversion parameter [ps/ch] ( PMT by PMT )
- 1<sup>st</sup> step (offline)
  - Energy loss conversion parameter [GeV/ch] ( slat by slat )
  - Global timing offset [ns] (1)
- 2<sup>nd</sup> step
  - Timing offset [ns] ( slat by slat )
  - Y position offset [cm] ( slat by slat )
  - Light velocity in scintillator [cm/ns] ( slat by slat )
- 3<sup>rd</sup> step
  - Slewing parameter [ns] ( PMT by PMT )
- 4<sup>th</sup> step
  - Run by run timing offset [ns]





### 0<sup>th</sup> step FEM TVC calibration "TSCAN"





slow ← fast

- Everyday calibration data with test pulse (TSCAN)
  - Channel to picosec converter.
  - 1 TP step is ~ 3.3 ns.
  - TVC conversion parameter ~ 28 [ps/ch]





# 1<sup>st</sup> step Energy loss conversion parameter



- Channel to GeV converter.
- Fitting by Landau function.
- MIP ~ 3 MeV.





# 1<sup>st</sup> step Global timing offset



#### Global timing offset

- For adjustment of mass<sup>2</sup> centroid.
- ~ 20 ns.





### Slat by slat Timing offset



Timing offset is given by difference between measured TOF and pion flight time (TOF(exp.)).

- Pion flight time
- ~ 20 ns @ p ~ 0.2 GeV/c
- ~ 17 ns @ p ~ 2.0 GeV/c





# Y position offset & Light velocity in scintillator



# Timing difference between lower and upper PMT.

Local y hit position.

#### Fitting function

$$Y = \left(\frac{T_0 - T_1}{2}\right) v_{light} - Y_{offset}$$





# 3<sup>rd</sup> step Slewing parameter



# Slewing correction

- Fitting function
- F = a + b/sqrt(x)
- Need large statistics if slewing correction is performed PMT by PMT.
  - Additional gain calibration
  - Fitting for sum of all upper and lower PMT.





# 4<sup>th</sup> step Run by run timing offset



#### Run2 Au + Au :

Selected high momentum π<sup>+</sup> ( 1.8







PHENIX Focus
TOF group



#### Hadron identification



- Pion, Kaon, Proton and deuteron are clearly identified!
  - Overall ~ 120 ps (overall, in mass²) time resolution is achieved.





- Single particle p<sub>T</sub> spectra
  - Central
    - Low p<sub>T</sub> slopes increase with mass.
    - Proton and antiproton yield ~ pion yiled @ high p<sub>T</sub>.
  - Peripheral
    - Mass dependence is less pronounced.
    - Similar to p + p.







- Central-to-Peripheral ratio (R<sub>cp</sub>) vs p<sub>T</sub>
  - Proton
    - No suppression,
       Ncoll scaling @ 1.5
       4.5 GeV/c.
  - $\pi_0$ 
    - Suppression
    - central > peripheral









#### Elliptic Flow of identified hadrons (π/K/p/d)

- − p<sub>T</sub> < 2 GeV/c : Hydrodynamical picture</li>
- p<sub>T</sub> > 2 GeV/c : quark/hadron coalescence ?









- Invariant mass spectra
  - -N = 5660 + / -240
  - S/B = 1/8.5
- Transverse mass spectra
  - The Temperature is constant as a function of centrality.
- Elliptic Flow
  - Hydro. ? coalescence ?



### PHENIX High-p<sub>⊤</sub> upgrade





Aerogel : (n=1.010, threshold= 10 % of max  $N_{p.e.}$ ) TOF : 100 ps time resolution

RICH :  $CO_2$ , (n = 1.00041)



North-West Aerogel Counter In PISA (by S. Takagi)





TOF group



# Summary

- The PHENIX Time-of-Flight (TOF) is designed for Hadron measurement and operated for the PID.
  - $-\pi/K$  separation up to  $\sim 2$  GeV/c.
  - K/p separation up to ~ 4 GeV/c.
  - Timing resolution is ~ 120 ps in Run2 Au + Au.
- TOF calibration is done in 4 steps and 6 parameters.
- TOF gives important physics measurements
  - Ex.
    - Single particle p<sub>T</sub> spectra, R<sub>cp</sub>.
    - Elliptic Flow of identified hadrons





T.Kawagishi, M. Oka, M.Narisawa, Y.Nagata, T.Shoujou, S.Takagi, S.Kaminaga, M.Shimomura, M.Konno, S.Sakai, A.Danmura, H.Masui, S.Kato, S.Esumi, Y.Miake\* (Univ. of Tsukuba, \*DC-member)

Y.Kuroki, M.Ono, H. Isuruoka, M.Aizawa, T.Hirano, K.Koseki, M. Suzuki, S.Urasawa, T.Shimada, H.Hayashi, R.Higuchi, Y.Miyamoto, Y.Yokota, D.Miura, T.Ishibashi, A.Kiyomichi, K.Enosawa, M.Nishimura, H.Sako, S.Nishimura, K.Kurita, K.Yagi (was in Univ. of Tsukuba (\*1))

T.Chujo (BNL (\*1)), S.Sato (JSPS/BNL (\*1))

M.Inaba (Tsukuba College of Technology (\*1))

D.Lim, J.Kang (Yonsei Univ.)

M.Chiu, C.Y.Chi (Columbia Univ. NEVIS)

M. Kaneta (KEK/Now @RBRC)

Lots of persons for the essential works in the past, and much more persons in the future.





# Back up

From Susumu's nice presentation in TOF Focus seminar last year







#### Infrastructure of TOF to Avoid a Fire.



#### ~ Plastic Scintillators are Flammable. ~

### (III) 80 temperature sensors (8 for each of 10 panels)

- If any T > 35 deg C, Adam monitor is Red.

- If any  $T > 35 \deg C$ , SMCS Alarm.

-Note: ~1W/PMT x 1920 PMTs

TOF-scintillators are in the **enclosed envelop** (for cooling air not to leak), although they are located very next to **~2000W** (~1W/PMT\*1920PMTs)

#### FYI: Blower Spec. Explosion proof

(American National Electrical Code (NEC) Class 1, Group D) [Motor, Dayton 7F980; 0.75 HP, and Blower: Dayton 3C494; 13 and 11/16 inches diameter)

#### (II) 2 Cooling air blowers (for E0 + for E1)

If smoke, the air stops.
 And suppression Gas (N<sub>2</sub>+Ar+CO<sub>2</sub>)
 by its compressed pressure.







### PMT & HV bleeder

| Physical Parameter                                        | Value                   |  |  |
|-----------------------------------------------------------|-------------------------|--|--|
| Spectral Response                                         | 300 to 650 nm           |  |  |
| Wavelength of Max. Response                               | 420 nm                  |  |  |
| Current Amplification                                     | ~ 3.9 × 10 <sup>6</sup> |  |  |
| Number of Dynodes                                         | 8 stages                |  |  |
| Anode Pulse Rise Time                                     | 1.3 ns                  |  |  |
| Electron Transit Time                                     | 14 ns                   |  |  |
| Transit Time Spread (TTS) in FWHM                         | 0.36 ns                 |  |  |
| High Voltage between Anode and Cathode                    | 1800 DCV                |  |  |
| Average Anode Current                                     | 0.1 mA                  |  |  |
| Ambient Temperature                                       | - 80 to + 50 °C         |  |  |
| Anode Dark Current<br>(After 30 min. Storage in Darkness) | 30 nA (typical)         |  |  |
| Photo Cathode Material                                    | Bialkali                |  |  |
| Photo Cathode Min. Effective Area                         | 15 mm in diameter       |  |  |



Schematic diagram of dynodes and bleeder for R3478s.

- Resisters are shown as R (R1=1.65 M $\Omega$ , 1/2 W; R2,  $R4 \sim R9$  = 240 k $\Omega$  1/4 W; R3 = 360 k $\Omega$ ).
- Capacitances are C ( $C1 \sim C3 = 0.01 \mu F$ , 200W).
- -Dynodes are shown as  $D1 \sim D8$ , the cathode are K, the anode are A.
- -The high voltage is supplied at -VH (negative, -1800V) with ground (G) by PVC Jacketed #8411 coaxial cable of BELDEN.
- -The signal output is shown *SIG* with ground (*G*) by RG58 coaxial cable of FUJIKURA.





### PMT intrinsic resolution



- Timing resolution decreases with larger p.e.#.
- Resolution < 100ps, for >10 p.e.
- Statistical behavior:
- At larger p.e.#, other mechanism.

$$\delta t \propto 1/\sqrt{n_{p.e.}}$$





### Light attenuation vs. Timing degradation

#### Light attenuation length vs. Timing degradation length





#### Intuitive explanation

- Light yield ( $\propto n_{p.e.}$ ) =  $e^{x/\lambda}$ .
- Timing resolution  $\propto n_{p.e.}^{-1/2} = e^{x/\lambda}$ .
- $\rightarrow \lambda_{\text{timing}} = 2 * \lambda_{\text{yield}}$
- Light yield decreases exponentially.
- Timing resolution degrades exponentially too.

$$\lambda_{timing} = 2 \cdot \lambda_{yield}$$



# Aging effect





#### Optical property



- -Change in emission spectrum
- -More damage in the region closer to the surface
  - → Oxidization ?

